
Writing classes b

Contents

• Implement cString class

• Need of destructor

• Scope of object

• Need of copy Constructor

• Passing objects to function

• Returning object from function.

Implement cString class

class cString
{

int length;
char *ptr;

public:
cString(); //default
cString(char*);

};

int main()
{

cString s1;
cString s2(“Hello”);

}

Default constructor for cString

cString::cString()

{

length=0;

ptr=new char[length+1]

*ptr=‘\0’;

}

Parameterized Constructor

cString::cString(char* p)

{

length=strlen(p);

ptr=new char[length+1];

strcpy(ptr,p);

}

Need of Destructor

• When object goes out of scope at that
implicitly destructor is called. And explicitly
when we use delete operator.

• If we are using pointer data member as class
member then we need to explicitly write
destructor otherwise it will create problem of
memory leakage.

Destructor

• How to write destructor

Syntax:

~ cString()

{

delete []ptr;

ptr=NULL;

}

Rules for creating destructor:

1. Use tield(~) operator.

2. Same name as class name.

3. No return type.

Need of Copy constructor

cString s1(“Hello”);

cString s2(s1);

1. Here compiler copy constructor is called. It will make
member wise copy that is called shallow copy.

2. It will create problem of dangling pointer.

3. To avoid dangling pointer problem we need to write
explicit copy constructor.

copy constructor

cString : : cString(cString& s1)

{

this -> length = s1 . length;

this -> ptr = new char [length + 1];

strcpy (this -> ptr , s1 . ptr);

}

Passing object to function

1. We can pass object to function and return
object from function.

2. Faculty need to show demo to them how to
pass object and return object from function.

3. How to pass object to function by reference
mechanism.

Lab Assignments

• Create a cString class with following

1. data members: length and pointer variable.

2. constructors

3. Destructor.

4. Copy constructor.

• Write a program to make addition of two objects
data.

